Mugberia Gangadhar Mahavidyalaya
 Surprise Test :: Mathematics(Hon.):: Part-III/Sem-III

Numerical Analysis: paper-VIII/CT-7(2017)
Answer any four: $\quad 10 \times 4=40$
1.(i) Derived Newton-Gregory formula : $f(x+k h)=\sum_{i=0}^{k}\left({ }^{k} C_{i}\right) \Delta^{i} f(x)$.
V.H. 97, 01, 05
(iii) Write down the following numbers correct upto 4 fignificant figures?
(a) $0.00305,200.51,630,0.01020$
(b) $0.0063945,0.090038$
VU-04
(iii) Let $u=4 x^{6}+3 x-9$. Find the percentage error in computing u at $x=1.1$, if the error in x is 0.05 .

VU-10

2(i) Derived the Fix point iteration (successive approximation) method
(ii) Define Order of Convergence of a iteration method
(iii) Find the Convergence of bisection Method
V.H. 05; C.H. 05

3(i) Find the straight line which fits the following data given in the table:

x_{i}	0	1	2	3	4
y_{i}	1.0	2.9	4.8	6.7	8.6

OR

Solve by Gauss-Seidel method the given system of linear equations

$$
\begin{aligned}
83 x_{1}+11 x_{2}-4 x_{3} & =95 \\
7 x_{1}+52 x_{2}+13 x_{3} & =104 \\
3 x_{1}+8 x_{2}+29 x_{3} & =71
\end{aligned}
$$

(ii) State Gauss-Seidel Iterative Method V.H. 00, 05; C.H. 03; B.H. 04, 06

4(i)Solve by Modified Euler's method the following differential equation $\frac{d y}{d x}=x-y, y(0)=1$ and $h=0.1$. Find $y(0.1)$ and $y(0.2)$?
(ii) Find the values of $y(0.2)$ using Runge-Kutta Method of 4th order given that

$$
\frac{d y}{d x}=x y+y^{2}, y(0)=1
$$

5(i)Prove that Newton Cotes' coefficients satisfy the relation $\sum_{i=0}^{n} k_{i}^{(n)}=1$.
V.H. 03; B.H. 03
(ii) Prove that Newton Cotes' coefficients satisfy the relation $k_{i}^{(n)}=k_{n-i}^{(n)}$.,
V.H. 03; B.H. 05
(iii)Derived Simpson's One-third Rule from Newton cotes formula. OR Weddle's Rule from Newton cotes formula
C.H. 01, 05; V.H. 01

6(i) State the Power method to find the Greatest Eigenvalue and corresponding eigenvector for any matrix of order n.

OR

The integral $\int_{1}^{1}|x| d x$ is computed by the trapezoidal rule with step length $h=0.01$. Then find the absolute error in the computed value

GATE-11
(ii) Find the quadratic polynomial which takes the same values as $f(x)$ at $x=-1,0,1$ and integrate it to prove that $\int_{-1}^{1} f(x) d x=\frac{1}{3}[f(-1)+4 f(0)+f(1)]$
Assuming the error to have the form $A f^{i v}(\xi),(-1<\xi<1)$, find the value of A.

