Surprise Test :: Mathematics(Hon.):: Part-III/Sem-III

Numerical Analysis: paper-VIII/CT-7(2017)

Answer any four: $10 \times 6 = 60$

1.(i) Derived Newton-Gregory formula : $f(x+kh) = \sum_{i=0}^{k} {\binom{k}{C_i} \Delta^i f(x)}$. V.H. 97, 01, 05

(iii) Write down the following numbers correct up to 4 fignificant figures?

(a) 0.00305, 200.51, 630, 0.01020 (b) 0.0063945, 0.090038

(iii) What is the degree of precision(D.P)? Find the D.P of Simson 1/3 rule.

2(i) Derived the Fix point iteration (successive approximation) method

(ii) Define Order of Convergence of a iteration method

(iii) Find the Convergence of bisection Method

3(i) Derived Newton's fundamental interpolation formula by divided difference formula.(ii)Solve by Gauss-Seidel method the given system of linear equations

$$83x_1 + 11x_2 - 4x_3 = 95$$

$$7x_1 + 52x_2 + 13x_3 = 104$$

$$3x_1 + 8x_2 + 29x_3 = 71$$

OR

State Gauss-Seidel Iterative Method

V.H. 00, 05; C.H. 03; B.H. 04, 06

4(i) (b) Derived the Euler's Modified Method(Euler-Cauchy Corrector Method) and also Solve by Modified Euler's method the following differential equation $\frac{dy}{dx} = x - y, y(0) = 1$ and h = 0.1. Find y(0.1) and y(0.2)?

(ii) Find the values of y(0.2) using Runge-Kutta Method of 4th order given that

$$\frac{dy}{dx} = xy + y^2, y(0) = 1$$

5(i)Prove that Newton Cotes' coefficients satisfy the relation $\sum_{i=0}^{n} k_i^{(n)} = 1$.

V.H. 03; B.H. 03

VU-04

V.H. 05; C.H. 05

(ii) Prove that Newton Cotes' coefficients satisfy the relation $k_i^{(n)} = k_{n-i}^{(n)}$.

V.H. 03; B.H. 05

(iii)Derived Simpson's One-third Rule from Newton cotes formula. OR Weddle's Rule from New-

C.H. 01, 05; V.H. 01

ton cotes formula

6(i) State the Power method to find the Greatest Eigenvalue and corresponding eigenvector for any matrix of order n and find the Greatest Eigenvalue and corresponding eigenvector for the matrix $\begin{bmatrix} -15 & 4 & 3 \end{bmatrix}$

$$A = \begin{bmatrix} -13 & 4 & 3\\ 10 & -12 & 6\\ 20 & -4 & 2 \end{bmatrix}$$
 by Power Method.

(ii) Find the quadratic polynomial which takes the same values as f(x) at x=-1, 0, 1 and integrate it to prove that $\int_{-1}^{1} f(x) dx = \frac{1}{3} [f(-1) + 4f(0) + f(1)]$

Assuming the error to have the form $Af^{iv}(\xi), (-1 < \xi < 1)$, find the value of A.

(7)(a) What is the difference between interpolation and extrapolation formulas?

- (b) State the Fundamental theorem of difference calculus.
- (c) What is Confluent Divided Differences?
- (d) Fit a second degree curve to the following data taking x as independent variable:

x_i	1	2	3	4	5	6	7	8	9
y_i	2	6	7	8	10	11	11	10	9

(8)(a) Obtain the least squares polynomial approximation of degree two for the function $f(x) = \sqrt{x}$ on the interval [0, 1].

(b)Solve the following system of equations by LU decomposition method:

$$8x_1 - 3x_2 + 2x_3 = 20$$

$$4x_1 + 11x_2 - x_3 = 33$$

$$6x_1 + 3x_2 + 11x_3 = 36$$

9(i)Obtain the Error in the Lagrange Interpolating Polynomial.

(ii) Using Newton's divided difference formula to find f(5) from the following table:

x	0	2	3	4	7	8
y = f(x)	4	26	58	112	466	668

(iii) Find f'(0.26) from the following table values using by Newton's backward difference interpolation formula.

x	0.10	0.15	0.20	0.25	0.30
f(x)	0.1003	0.1511	0.2027	0.2553	0.3093