Mugberia Gangadhar Mahavidyalaya

Surprise Test :: Mathematics(Hon.):: Part-III/Sem-III

Numerical Analysis: paper-VIII/CT-7(2018)
Answer any four: $10 \times 4=40$
1.(i) If a number be rounded to n correct significant figures, then the relative error is less than

$$
\frac{1}{k \times 10^{n-1}} . \quad(n \neq 1) .
$$

where k is the first significant figure in the number.
(ii)If $f(x)$ is the polynomial of degree n then the $n^{\text {th }}$ order difference is a constant and and its $(n+1)$ th difference vanishes.
(iii) If $f(x)=x^{2}$, Prove that $f[a, b, c]=1$ for distinct a,b,c.

2(i)Obtain the Error in the Lagrange Interpolating Polynomial.
(ii)Using Newton's divided difference formula to find $f(5)$ from the following table:

x	0	2	3	4	7	8
$y=f(x)$	4	26	58	112	466	668

3(i) Find $f^{\prime}(0.26)$ from the following table values using by Newton's backward difference interpolation formula.

x	0.10	0.15	0.20	0.25	0.30
$f(x)$	0.1003	0.1511	0.2027	0.2553	0.3093

(ii) What is the degree of precision(D.P)? Find the D.P of Simson $1 / 3$ rule.
(iii) Find the Newton-Cotes' closed type numerical integration formula in order to find the value of the integral

$$
I=\int_{a}^{b} f(x) d x
$$

for a given function $y=f(x)$ in the interval $[a, b]$
4(i) Find the Condition of convergency of N-R Method?
(ii)Find also the rate of convergency of N-R Method?
(iii) State the Gauss Elimination Method to solve a system of linear equation.

5(i)Solve by Modified Euler's method the following differential equation $\frac{d y}{d x}=x-y, y(0)=1$ and $h=0.1$. Find $y(0.1)$ and $y(0.2)$?
(ii) Find the values of $y(0.2)$ using Runge-Kutta Method of 4th order given that

$$
\frac{d y}{d x}=x y+y^{2}, y(0)=1
$$

5(i) State the advantage and disadvantage of N-R Method.
(ii) State the advantages and disadvantage of bisection method.
(iii) Find the positive root of the equation $f(x)=x^{3}-3 x+1.06$ by method of bisection correct to three significant figure.
6(i) Find the Greatest Eigenvalue and corresponding eigenvector for the matrix $A=\left[\begin{array}{ccc}-15 & 4 & 3 \\ 10 & -12 & 6 \\ 20 & -4 & 2\end{array}\right]$ by Power Method.

OR

Apply Euler Maclaurin sum formula to find the sums $\frac{1}{11^{3}}+\frac{1}{12^{2}}+\cdots+\frac{1}{50^{3}}$, correct upto 5 significant figures.
(ii) Evaluate $\int_{0.1}^{0.7}\left(e^{x}+2 x\right) d x$ by Trapezoidal Rule and Simpson's one-third Rule, taking $h=0.1$ and correct upto ${ }_{5}^{0.1}$ - decimal places.

