Mugberia Gangadhar Mahavidyalaya
 Department of Mathematics :: Class Text(2019) Partial Differential Equations

Mathematics (Hons.): SEM-V: CT11: Full Marks 40

Any five from Group -A:

1. Find the general solution of the PDE $u u_{x}+y u_{y}=x$.
2. Find the partial differential equation by eliminating the arbitrary constants a and b from $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.
3. Find the order and degree of the PDE $p \tan y+q \tan x=\sec ^{2} z$.
4. Let $u(x, t), x \in \Re, t \geq 0$ be the solution of the initial value problem $u_{x x}=u_{t t}, u(x, 0)=$ x and $u_{t}(x, 0)=1$. Then find the value of $u(2,2)$.
5. Let $a, b \in \Re$ be such that $a^{2}+b^{2} \neq 0$. Then verify that the Cauchy problem $a u_{x}+b u_{y}=$ $1, x, y \in \Re$ with $u(x, y)=x$ on $a x+b y=1$ has a unique solution or not ?
6. The second order PDE $u_{y y}-y u_{x x}+x^{3} u=0$ is

NET(MS): (June)2012
(a) Elliptic for all $x \in \Re, y \in \Re$
(b) Parabolic for all $x \in \Re, y \in \Re$
(c) Elliptic for all $x \in \Re, y<0$
(d)Hyperbolic for all $x \in \Re, y<0$.
7. Find characteristic curve of the following PDEs :
(a) $y z \frac{\partial z}{\partial x}+x z \frac{\partial z}{\partial y}=x y$
(b) $y z \frac{\partial z}{\partial x}+x z^{2} \frac{\partial z}{\partial y}=x y$.

Any six questions from Group -B:

1. Find the integral surface of the linear $\operatorname{PDE} x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$ which contains the straight line $x+y=0, z=1$.
2. Find the equation of the integral surface of $x^{2} p+y^{2} q+z^{2}=0$ which passes through the hyperbola $x y=x+y, z=1$
3. Find the equation of the integral surface satisfying $4 y z p+q+2 y=0$ and passing through the curve $y^{2}+z^{2}=1, x+z=2$

IAS 1997
4. Show that the equations $x p-y q=0, z(x p+y q)=2 x y$ are compatible and solve them.
Ans. $z^{2}=2 x y+k$ where k is a constant.
5. Reduce the following PDEs to canonical form : $\quad x^{2} \frac{\partial^{2} z}{\partial x^{2}}-2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}-x \frac{\partial z}{\partial x}+$ $3 y \frac{\partial z}{\partial y}-\frac{8 y}{x}=0$.
6. Find the solution of the equation $2 z=p^{2}+q^{2}+2(p-x)(q-y)$ which passes through the x -axis.

IAS 2002
7. Find a complete and singular integrals of $2 x z-p x^{2}-2 q x y+p q=0$

IAS 1991
8. Find the characteristics of the equation $p^{2}+q^{2}=2$ and determine the integral surface which passes through the straight line $x=0, z=y$.
9. Using the method of separation of variables solve

$$
4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u, \text { where } u(0, y)=3 e^{-y}-e^{-5 y}
$$

