Mugberia Gangadhar Mahavidyalaya
 Department of Mathematics

Internal Assessment Examination of B.Sc (Mathematics) SEM-II-2019
PAPER-CT4::Full Marks 20 :: Time -1 Hour
Any five questions from Group -A: $2 \times 5=10$

1. Let A be a 3×3 matrix with real entries. If three solutions of the linear system of differential equations $\dot{x}(t)=A x(t)$ are given by $\left(\begin{array}{c}e^{t}-e^{2 t} \\ -e^{t}+e^{2 t} \\ e^{t}+e^{2 t}\end{array}\right)$, $\left(\begin{array}{c}-e^{2 t}-e^{-t} \\ e^{2 t}-e^{-t} \\ e^{2 t}+e^{-t}\end{array}\right)$ and $\left(\begin{array}{c}e^{-t}+2 e^{t} \\ e^{-t}-2 e^{t} \\ -e^{-t}+2 e^{t}\end{array}\right)$. Then the sum of the diagonal entries of A is equal to -- ?

GATE(MA):2018

2. Let $(x(t), y(t))$ satisfy for $t>0$
$\frac{d x}{d t}=-x+y, \frac{d y}{d t}=-y, \quad x(0)=y(0)=1$.
Then find the value of $(x(t))$.
3. Solve : $\frac{d x}{y^{2}+y z+z^{2}}=\frac{d y}{z^{2}+z x+x^{2}}=\frac{d z}{x^{2}+x y+y^{2}}$.
4. Solve : $\frac{d x}{x^{2}+y^{2}}=\frac{d y}{2 x y}=\frac{d z}{z(x+y)}$.
5. Solve : $\frac{d x}{x\left(x^{2}+3 y^{2}\right)}=\frac{d y}{y\left(y^{2}+3 x^{2}\right)}=\frac{d z}{2 z\left(x^{2}+y^{2}\right)}$.
6. Consider the first order system of linear equations $\frac{d X}{d t}=A X$ where $A=\left(\begin{array}{cc}3 & 2 \\ -2 & -1\end{array}\right)$ and $X(t)=\binom{x_{1}(t)}{x_{2}(t)}$. Then

NET(MS): (Dec.)2011
(a) the coefficient matrix A has a repeated eigenvalue $\lambda=1$.
(b) there is only one linearly independent eigenvector $X_{1}=\binom{1}{-1}$.
(c) the general solution of the ODE is $\left(a X_{1}-b X_{2}\right) e^{t}$, where a and b are arbitrary constants and $X_{1}=\binom{1}{-1}, \quad X_{2}=\binom{t}{\frac{1}{2}-t}$.
(d) the vectors X_{1} and X_{2} in the option (c) given above are linearly independent.

Any two questions from Group -B:

1. Solve: $\left(D^{2}+1\right) x+(D+1) y=t, 2 x+(D+1) y=0$, given that $x(0)=y(0)=0$ and $D x(0)=-5$.
2. Find the general solution and Fundamental Matrix for the system

$$
\begin{aligned}
\frac{d y_{1}}{d t} & =3 y_{1}+y_{2} \\
\frac{d y_{2}}{d t} & =-y_{1}+y_{2}
\end{aligned}
$$

3. Solve: $\frac{d x}{x\left(y^{2}+z\right)}=\frac{d y}{-y\left(x^{2}+z\right)}=\frac{d z}{z\left(x^{2}-y^{2}\right)}$ which contains the straight line $x+y=0, z=1$.
