Mugberia Gangadhar Mahavidyalaya

Internal Assessment for M.Sc in Mathematics : Sem.-I(2018)

Paper-105:: Non-linear Dynamics

Answer any five: $2 \times 5 = 10$:: Time 30 minutes

- 1. Find the steady state point for the system of equations $\dot{x} = x + 2y$ and $\dot{y} = x^2 + y$.
- 2. Determine the steady state and their stability of the differential equation $\dot{y} = f(y) = y^2 5y + 6$.
- 3. Discuss about the stability of the following system of differential equations: $\dot{x} = -x + y$, $\dot{y} = 4x y$.
- 4. Investigate the stability of the zero solution of the system $\dot{x} = -y x^3$, $\dot{y} = x y^3$.
- 5. Prove that the zero solution of the system $\dot{x}_1 = -x_1 + x_2^2 + x_3^2$, $\dot{x}_2 = x_1 2x_2 + x_1^2$, $\dot{x}_3 = x_1 + 2x_2 3x_3 + x_2x_3$ is uniformly and asymptotically stable.
- 6. Prove that the zero solution of the system

$$\frac{d^3x}{dt^3} - 2\frac{d^2x}{dt^2} - \frac{dx}{dt} + 2x = \frac{d^2x}{dt^2}(x + \frac{dx}{dt})$$

is unstable.

- 7. Show that all solution $\ddot{x} + \{a + c(1 + t^2)^{-1}\}x = e^{-t}$ are stable if a > 0.
- 8. By linearizing around the critical points, draw the phase plane portrait of $y'' + y y^3 = 0$.