4

M.Sc 4th Semester Internal Assessment Examination, 2020

Department of Mathematics, Mugberia Gangadhar Mahavidyalaya

(Operational Research Modeling-II)

Paper MTM – 405(Unit-I) ;; FULL MARKS 10

Time: 1 Hour

Answer Q. no. 1 and any one from the rest. 10

1. Answer any two questions:

(a) Find the curve x=x(t) which minimize the functional $J = \int (\dot{x}^2 + 1) dt$,

x(0) = 1 and x(1) = 2?

(b) What is the failure rate? If the failure distribution Q has a density and

failure rate $\lambda(t)$, show that $1 - Q(t) = \exp[-\int_{0}^{t} \lambda(t) dt]$

(c) Define entropy function and explain its importance.

(d) Draw the diagram of a communication system mentioning all the important components including noise system.

2. In a system, there are n number of components connected in series with reliability $R_i(t)=n, i=1, 2, ... n$. Find reliability of the system.

If $R_1(t) = R_2(t) = \dots = R_n(t) = e^{-\lambda t}$ then find the reliability of the system. 6

3. An electrochemical system is characterized by the ordinary differential equation $\frac{dx_1}{dt} = x_2$ and $\frac{dx_2}{dt} + x_2 = u$ where u is the control variable chosen in such a way that the cost function $\frac{1}{2}\int_{0}^{a} (x_1^2 + 4u^2)dt$ is minimized. Show that if the boundary conditions satisfied by the state variables are $x_1(0)=a$, $x_2(0)=b$, where a, b are constants and $x_1 \rightarrow 0, x_2 \rightarrow 0$ as $t \rightarrow \infty$, the optimal choice for u is $u = -\frac{1}{2}x_1(t) + (1 - \sqrt{2})x_2(t)$.

2