

Subject: CHEMISTRY

Paper : C 13 - T

(Inorganic Chemistry)

Full Marks : 40

Time : 2 Hours

Candiates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Group - A

	Ans	5×4=20	
1.	(a)	What are the functions of 'Heme' and 'Globin' in Hemoglobin?	2
	(b)	How do you prepare ferrocene? Explain the stability of the complex.	3
2.	(a)	Write short note on Ziegler-Natta catalysis.	2
	(b)	Write down the sequence of reactions in 'PS-I' and 'PS-II'.	3
3.	(a)	Draw the synergic bonding in metal carbonyls.	2
	(b)	Which metal ion is present in carbonic anhydrase enzyme? Enumerate the activity of this enzyme.	anhydrase 3

4.	(a)	Comment on the following CO stretching frequencies :	3
		$\left[\operatorname{Ni}(\operatorname{CO})_{4}\right] > \left[\operatorname{Co}(\operatorname{CO})_{4}\right]^{-} > \left[\operatorname{Fe}(\operatorname{CO})_{4}\right]^{2-}$	
		2037 cm^{-1} 1918 cm ⁻¹ 1788 cm ⁻¹	
	(b)	Explain the principle of chelation therapy with reference to the removal of arsenic.	2
5.	(a)	How does nature protect Fe(II) in Hemoglobin from its irreversible oxidation in preser of O_2 ? What do you mean by cooperative interaction in O_2 affinity of Hemoglobin (2+	1ce ? 1)
	(b)	Low oxidation state organometallic complex tend to obey the 18-electron rule. Just with example.	ify 2
6.	(a)	What is nitrogenase ? What is its biological function ?	2
	(b)	What is an insertion reaction ? Give two examples for this.	3
		Group - B	
	Ans	wer any <i>two</i> from the following questions : $10 \times 2 = 2$	20
1.	(a)	Comment on the CO stretching frequencies $(v_{co}cm^{-1})$ in the following compounds.	
		$V(CO)_{6}^{-}$ $Cr(CO)_{6}$ $Mn(CO)_{6}^{+}$ 1860 2000 2090	
	(b)	Sketch a catalytic cycle for the hydroformylation of RCH=CH ₂ using an organometal catalyst indicating steps where insertion and oxidative addition reactions occur.	llic
	(c)	Starting from $(NH_4)_2[PtCl_4]$ how will you synthesize cis-and trans-platin. 2+4+4=3	10
2.	(a)	Show that Rh in $\left[(CO)_2 Rh(\mu - Cl)_2 Rh(CO)_2 \right]$ does not obeys 18-electron rule.	
	(b)	Based on EAN rule draw the structures of $Mn_2(CO)_{10}$, $Co_2(CO)_8$ and $Fe_2(CO)_8$ Count the number of bridging 'CO' groups.) ₉ .
	(c)	Write down the roles of Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , Cu ²⁺ , Zn ²⁺ in life.	
	(d)	Which one is more toxic $-Hg^{2+}$, CH_3HgCl , $(CH_3)_2Hg$ and why ? $2+3+3+2=3$	10
3.	(a)	What is Wilkinson's catalyst ? Give the catalytic cycle for the hydrogenation of ethyle molecule using Wilkinson's catalyst.	me

(b) Comment on the CO stretching frequencies $(v_{co}cm^{-1})$ in the following compounds: $\left[\operatorname{Ti}(\operatorname{CO})_{6}\right]^{2-} \left[\operatorname{V}(\operatorname{CO})_{6}\right]^{-} \left[\operatorname{Cr}(\operatorname{CO})_{6}\right] \left[\operatorname{Mn}(\operatorname{CO})_{6}\right]^{+}$ СО 2143 1750 1860 2002 2090 (c) Using 18-electron rule as guide, find the number 'n' of CO in the following compounds $: [Mn_2(CO)_n], [Co(\eta^5 - C_5H_5)(CO)_n]$ (1+3)+3+3=10complex 4. (a) How would you design a synthesis of the trans- $\left[\operatorname{PtCl}_{2}(\operatorname{NH}_{3})(\operatorname{tu})\right]\left\{\operatorname{tu}=\left(\operatorname{H}_{2}\operatorname{N}\right)_{2}\operatorname{CS}\right\}.$ (b) Do you expect any rotation of the ethylene molecule in the Zeise's salt without hampering the stability of the complex ? Explain. (c) Compare the oxygen affinity of Hemoglobin and Myoglobin. (d) The V-C bond lengths in $V(CO)_6$ and $V(CO)_6^-$ are 200 pm and 193 pm respectively. 2+3+2+3=10 Explain. SQ.