
4. (a) Comment on the following CO stretching frequencies:
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]>\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}>\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
$2037 \mathrm{~cm}^{-1} \quad 1918 \mathrm{~cm}^{-1} \quad 1788 \mathrm{~cm}^{-1}$
(b) Explain the principle of chelation therapy with reference to the removal of arsenic.
5. (a) How does nature protect Fe (II) in Hemoglobin from its irreversible oxidation in presence of O_{2} ? What do you mean by cooperative interaction in O_{2} affinity of Hemoglobin?
(b) Low oxidation state organometallic complex tend to obey the 18 -electron rule. Justify with example.
6. (a) What is nitrogenase? What is its biological function?
(b) What is an insertion reaction? Give two examples for this.

Group - B

Answer any two from the following questions :

1. (a) Comment on the CO stretching frequencies $\left(v_{\mathrm{co}} \mathrm{cm}^{-1}\right)$ in the following compounds.

$$
\begin{array}{ccc}
\mathrm{V}(\mathrm{CO})_{6}^{-} & \mathrm{Cr}(\mathrm{CO})_{6} & \mathrm{Mn}(\mathrm{CO})_{6}^{+} \\
1860 & 2000 & 2090
\end{array}
$$

(b) Sketch a catalytic cycle for the hydroformylation of $\mathrm{RCH}=\mathrm{CH}_{2}$ using an organometallic catalyst indicating steps where insertion and oxidative addition reactions occur.
(c) Starting from $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{PtCl}_{4}\right]$ how will you synthesize cis-and trans-platin. $2+4+4=10$
2. (a) Show that Rh in $\left[(\mathrm{CO})_{2} \mathrm{Rh}(\mu-\mathrm{Cl})_{2} \mathrm{Rh}(\mathrm{CO})_{2}\right]$ does not obeys 18 -electron rule.
(b) Based on EAN rule draw the structures of $\mathrm{Mn}_{2}(\mathrm{CO})_{10}, \mathrm{Co}_{2}(\mathrm{CO})_{8}$ and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$. Count the number of bridging ' CO ' groups.
(c) Write down the roles of $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$ in life.
(d) Which one is more toxic $-\mathrm{Hg}^{2+}, \mathrm{CH}_{3} \mathrm{HgCl},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Hg}$ and why? $2+3+3+2=10$
3. (a) What is Wilkinson's catalyst? Give the catalytic cycle for the hydrogenation of ethylene molecule using Wilkinson's catalyst.
(b) Comment on the CO stretching frequencies $\left(v_{\mathrm{co}} \mathrm{cm}^{-1}\right)$ in the following compounds:

(c) Using 18 -electron rule as guide, find the number ' n ' of CO in the following compounds
$:\left[\mathrm{Mn}_{2}(\mathrm{CO})_{\mathrm{n}}\right],\left[\mathrm{Co}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{\mathrm{n}}\right]$ $(1+3)+3+3=10$
4. (a) How would you design a synthesis of the complex trans$\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)(\mathrm{tu})\right]\left\{\mathrm{tu}=\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CS}\right\}$.
(b) Do you expect any rotation of the ethylene molecule in the Zeise's salt without hampering the stability of the complex ? Explain.
(c) Compare the oxygen affinity of Hemoglobin and Myoglobin.
(d) The V-C bond lengths in $\mathrm{V}(\mathrm{CO})_{6}$ and $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$are 200 pm and 193 pm respectively. Explain.

