
b) Prove that for a linear homogeneous production function total product gets exhausted if the factors are paid according to their marginal productivities. $\quad(3+(3 \times 2))+6$
2. Derive the compensated demand functions of q_{1} and q_{2}, given the utility function $U=q_{1} q_{2}$ and the budget constraint $p_{1} q_{1}+p_{2} q_{2}=M$, and check the second order condition.
3. Solve the following problem graphically:

$$
\operatorname{Max} \pi=2 x_{1}+5 x_{2}
$$

Subject to $\quad x_{1} \leq 4$

$$
\begin{gathered}
x_{2} \leq 3 \\
x_{1}+2 x_{2} \leq 8 \\
\text { And } \quad x_{1}, x_{2}>0
\end{gathered}
$$

Also find out the dual of the above mentioned problem.
4. Derive the cost function from the following production function:

$$
q=A k^{\alpha} l^{\beta}
$$

where A, α and β are constants and positive
5. Utility function of a consumer is given as $U=e^{x_{1} x_{2}}$. His budget constraint is given as $y_{0}=p_{1} x_{1}+p_{2} x_{2}$. Find the expression for price elasticity of demand for both the commodities. Discuss the economic interpretation of the Lagrange multiplier. (10+5)
6. Show by using the method of calculus that the Indifference curves are downward sloping and convex to the origin.
7. The rate of price change is 3 times the amount of excess demand in a market. If the demand and supply functions are given respectively as $D(t)=5-3 p(t)$ and $\mathrm{S}(\mathrm{t})=3+2 \mathrm{p}(\mathrm{t})$, examine the dynamic stability of the market. The initial condition is given as $\mathrm{p}(\mathrm{t})=\mathrm{p}_{0}$ when $\mathrm{t}=0$.

8 a) Given $A=\left[\begin{array}{lrl}-1 & 5 & 7 \\ 0 & -2 & 4\end{array}\right]$
Show that $\mathrm{AI}=\mathrm{IA}=\mathrm{A}$
b) Given $B=\left[\begin{array}{cc}6 & -12 \\ -3 & 6\end{array}\right]$

Can you derive inverse of Matrix B? If not, why.
c) Given $C=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $D=\left[\begin{array}{cc}0 & -1 \\ 6 & 7\end{array}\right]$ show that $(C D)^{\prime}=D^{\prime} C^{\prime}$
d) Find the rank of the Matrix $A=\left[\begin{array}{ccc}4 & 5 & 6 \\ 5 & 7 & 2 \\ 8 & 10 & 12\end{array}\right]$

