Assignment 1

Department of Physics, Mugberia Gangadhar Mahavidyalaya, 2022

1. Write down the auxiliary equations and find its root of the following differential equations:

(a)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0,$$

(a)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$
, (b) $2\frac{d^2y}{dx^2} + 7\frac{dy}{dx} - 3y = 0$

(c)
$$4\frac{d^2y}{dx^2} + 7y = 0$$
, (d) $\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

(d)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

2. Obtain the general solutions, that is, the complementary functions, of the following equations:

(a)
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$$

(a)
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$$
 (b) $\frac{d^2y}{dx^2} + 7\frac{dy}{dx} + 6y = 0$ (c) $\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 0$

(c)
$$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 0$$

(d)
$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 0$$

(d)
$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 0$$
 (e) $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$ (f) $\frac{d^2y}{dt^2} + \frac{dy}{dt} + 8y = 0$

(f)
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + 8y = 0$$

(g)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$$

(h)
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + 5y = 0$$

(g)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$$

 (h) $\frac{d^2y}{dt^2} + \frac{dy}{dt} + 5y = 0$
 (i) $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$

(j)
$$\frac{d^2y}{dx^2} + 9y = 0$$

(k)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = 0$$

(k)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = 0$$
 (l) $\frac{d^2x}{dt^2} - 16x = 0$

3. Find a particular integral for the equation $\frac{d^2x}{dt^2} - x = 4e^{-2t}$

- 4. Obtain the general solution of y'' y' 2y = 6
- 5. Obtain the general solution of the equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 10\cos 2x$

Find the particular solution satisfying y(0) = 1, $\frac{dy}{dx}(0) = 0$

- 6. Find a particular integral for the equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 1 + x$
- Find the general solution of

(a)
$$\frac{d^2x}{dt^2} - 6\frac{dx}{dt} + 5x = 3$$
 (b) $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$

(b)
$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^{it}$$