MUGBERIA GANGADHAR MAHAVIDYALAYA

P.O.-BHUPATINAGAR, Dist.-PURBA MEDINIPUR, PIN.-721425, WEST BENGAL, INDIA NAAC Re-Accredited B+ Level Govt. aided College CPE (Under UGC XII Plan) & NCTE Approved Institutions DBT Star College Scheme Award Recipient

E-Mail: mugberia college@rediffmail.com // www.mugberiagangadharmahavidyalaya.ac.in/

Department of Physics

Syllabus distribution for Physics Hons, GE and B.Sc Pure Pass

	Physics (Hons)					
Course	Course content/Syllabus	Credit/ Marks	Allotted Teachers	Class allotted per week	Total class	
	SEMESTER I					
C1T	 Mathematical Physics Calculas Recapitulation: Limits, continuity, average and instantaneous quantities, differentiation. Plotting functions. Intuitive ideas of continuous, differentiable, etc. functions and plotting of curves. Approximation: Taylor andbinomial series (statements only). First Order and Second Order Differential equations: First Order Differential Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of existence and Uniqueness Theorem for Initial Value Problems. Particular Integral. Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers. Introduction to Probablity Independent random variables: Probability distribution functions; binomial, Gaussian, and Poisson, with examples. Mean and variance. Dependent events: Conditional Probability. Bayes' Theorem and the idea of hypothesis testing. 	04	Dr. Wadut Shaikh	02	(04*15) =60	

	Vector Calculas Recapitulation of vectors: Properties of vectors under rotations. Scalar product and its invariance under rotations. Vector product, Scalar triple product and their interpretation in terms of area and volume respectively. Scalar and Vector fields. Vector Differentiation: Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical		Gourcha nd Manna	02	
	interpretation. Divergence and curl of a vector field. Del and				
	Laplacian operators. Vectoridentities.				
	Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications (no rigorous proofs).				
	Orthogonal Curvilinear Coordinates				
	Orthogonal Curvilinear Coordinates. Derivation of Gradient,				
	Divergence, Curl and Laplacian in Cartesian				
	Dirac Definition of Dirac delta function Representation as limit of a				
	Gaussian function and rectangular function				
	Properties of Dirac delta function.				
C1P	Mathematical Physics Lab	02	Dr.	04	(04*15)
	Introduction and Overview of Computer architecture and organization		Wadut		=60
	Basics of scientific computing				-00
	Errors and error Analysis		Shaikh		
	Introduction to programming in python				
	Basic Programs				
	Random number generation				
	Solution of Algebraic and Transcendental equations by Bisection,				
	Newton Raphson and Secantmethods				
	formula, Error estimation of linear interpolation				
	Numerical differentiation (Forward and Backward difference				
	formula) and Integration (Trapezoidal and Simpson rules), Monte				
	Carlo method				
	Differential equation Fuler modified Fuler and Runge-Kutta (RK)				
	second and fourth order methods				
C2T	Mechanics	04	Dehaeieh	01	(04*15)
021	Fundamentals of Dynamics		Debasion		
	Reference frames. Inertial frames; Review of Newton's Laws of		Das		=60
	Motion. Galilean transformations; Galilean invariance. Momentum of				

variable- mass system: motion of rocket. Motion of a projectile in Uniform gravitational field Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse.			
Work and Energy Work and Kinetic Energy Theorem. Conservative and non- conservative forces. Potential Energy. Qualitative study of one dimensional motion from potential energy curves. Stable and unstable equilibrium. Elastic potential energy. Force as gradient of potential energy. Work & Potential energy. Work done by non- conservative forces. Law of conservation of Energy.			
Collisions Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames			
Rotational Dynamics Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Motion involving both translation and rotation.			
Elasticity Relation between Elastic constants. Twisting torque on a Cylinder or Wire.	Arpita Das	02	
Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube.			
Gravitation and Central Force Motion Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere. Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).			
Oscillations SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor.			

C2P	Mechanics Lab (02	Gourcha	04	(04*15)
	General 1	Горіс		nd		=60
	Discussio	n on random errors in observations.		Manna		
	List of Practical					
	1.	Measurements of length (or diameter) using vernier				
		caliper, screw gauge and travellingmicroscope.				
	2.	To study the random error in observations.				
	3.	To determine the height of a building using a Sextant.				
	4.	To study the Motion of Spring and calculate, (a) Spring constant, (b) g and (c) Modulus of rigidity.				
	5. T	To determine the Moment of Inertia of a Flywheel.				
	6.	To determine g and velocity for a freely falling body using Digital Timing Technique				
	7.	To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).				
	8.	To determine the Young's Modulus of a Wire by Optical Lever Method.				
	9.	To determine the Modulus of Rigidity of a Wire by Maxwell's needle.				
	10.	To determine the elastic Constants of a wire by Searle's method.				
	11.	To determine the value of g using Bar Pendulum.				
	12.	To determine the value of g using Kater's Pendulum.				

SEMESTER II							
СЗТ	Electricity and Magnetism	04	Debasish	01	(04*15)		
	Electric Field and Electric Potential Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole. Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Uniqueness theorem (statement). Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere.		Das		=60		
	Dielectric Properties of Matter Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector D. Relations between E, P and D. Gauss' Law in dielectrics.						
	Magnetic Field Magnetic force between current elements and definition of Magnetic Field B. Biot- Savart's Law and its simple applications: straight wire and circular loop. Current Loop asa Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) infinite straight wire, (2) Infinite planar surface current, and (3) Solenoid. Properties of B: curl and divergence. Axial vector property of B and its consequences. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field.	_	Arpita Das	02			
	Magnetic Properties of MatterMagnetizationvector(M).MagneticIntensity(H).MagneticSusceptibility and permeability. Relation between B,H, M. Ferromagnetism. B-H curve and hysteresis.						
	Electromagnetic Induction Faraday's Law. Lenz's Law. Self-Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. Introduction to Maxwell's Equations. ChargeConservation and Displacement current						
	Electrical Circuits AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit		Sourav Panda	01			
	Network theorems						

	Ideal Constant-voltage and Constant-current Sources. Network Theorems: Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits				
C3P	 Electricity and Magnetism (Lab) Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses. List of Practical To study the characteristics of a series RC Circuit. To determine an unknown Low Resistance using Potentiometer. To determine an unknown Low Resistance using Carey Foster's Bridge. To determine the resistance of a galvanometer using Thomson's method. Measurement of field strength B and its variation in a solenoid (determine dB/dx) To verify the Thevenin and Norton theorems. To determine self-inductance of a coil by Anderson's bridge. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. To study the response curve of a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q. 	02	Sourav Panda	04	(04*15) =60

C4P	 Waves and Optics Superposition of Collinear Harmonic oscillations Linearity and Superposition Principle. Superposition of two collinear oscillations having 1.) equal frequencies and (2) different frequencies (Beats). Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and (2) equal frequency differences. Superposition of two perpendicular Harmonic Oscillations Graphical and Analytical Methods. Lissajous Figures with equal an unequal frequencyand their uses. 	04	Dr. Wadut Shaikh	01	(04*15) =60
	Wave Motion Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves		Rupam Mal	02	
	Velocity of Waves Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction.				
	Superposition of Two Harmonic Waves Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical Treatment. Phase and Group Velocities. Changes with respect to Position and Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of Stretched Strings. Plucked and Struck Strings. Melde's Experiment. Longitudinal Standing Waves and Normal Modes. Open and Closed Pipes. Superposition of N Harmonic Waves.				
	Wave Optics Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence.				
	Interference Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge- shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index.		Gourcha nd Manna	01	
	Interferometer Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3)				

	Wavelength Difference, (4) Refractive Index, and (5) Visibility of				
	Fringes. Fabry-Perot interferometer.				
	Diffraction and Holography Kirchhoff's Integral Theorem Fresnel-Kirchhoff's Integral				
	formula. (Qualitative discussion only) Fraunhofer diffraction: Single				
	slit. Circular aperture, Resolving Power of a telescope. Double slit.				
	Multiple slits. Diffraction grating. Resolving power of grating. Fresnel				
	Diffraction: Fresnel's Assumptions. Fresnel's Half-Period Zones for				
	Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of				
	diffraction pattern of a straight edge a slit and a wire Holography				
	Principle of Holography. Recording and Reconstruction Method.				
	Theory of Holography as Interference between two Plane Waves. Point				
	source holograms.				
C4P	Wave and Optics Lab	02	Gourcha	04	(04*15)
	List of Practical		nd		=60
	1. To determine the frequency of an electric tuning fork by		Manna		
	Melde's experiment and				
	verify λ^2 –T law.				
	2. To investigate the motion of coupled oscillators.				
	3. To study Lissajous Figures.				
	4. Familiarization with: Schuster's focusing; determination of angle of prism.				
	5. To determine refractive index of the Material of a prism using sodium source.				
	 To determine the dispersive power and Cauchy constants of the material of a prism using mercury source. 				
	7. To determine the wavelength of sodium source using				
	Michelson's interferometer.				
	 To determine wavelength of sodium light using Fresnel Biprism. 				
	9. To determine wavelength of sodium light using Newton's Rings.				
	10. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.				
	11. To determine wavelength of (1) Na source and (2)				
	spectral lines of Hg source usingplane diffraction grating.				
	 To determine dispersive power and resolving power of a plane diffraction grating. 				

	SEMESTER III						
C5T	Mathematical Physics-II	04	Dr.	02	(04*15)		
			Wadut		=60		
	Fourier Series		Ohailth				
	Dirichlet Conditions (Statement only) Expansion of periodic functions,		Snaikn				
	in a series of sine and cosine functions and determination of Fourier						
	coefficients. Complex representation of Fourier series. Expansion of						
	functions with arbitrary period. Expansion of non-periodic functions						
	over an interval. Even and odd functions and their Fourier expansions.						
	Application. Summing of Infinite Series. Term-by-Term differentiation						
	and integration of Fourier Series. Parseval Identity.						
	Frobenius Method and Special Functions						
	Singular Points of Second Order Linear Differential Equations and their						
	importance. Frobenius method and its applications to differential						
	equations. Legendre, Bessel, Hermite and Laguerre Differential						
	Equations. Properties of Legendre Polynomials: Rodrigues Formula,						
	Generating Function, Orthogonality. Simple recurrence relations.						
	Functions of the First Kind. Generating Function simple recurrence						
	relations. Zeros of Bessel Functions (Jo(x) and J1(x)) and Orthogonality.						
	Some Special Integrals						
	Beta and Gamma Functions and Relation between them. Expression of						
	Integrals in terms of Gamma Functions. Error Function (Probability						
	Integral).						
			Rupam	02			
	Variational calculus in physics		Mal				
	Functionals. Basic ideas of functionals. Extremization of action as a						
	of motion for simple systems: harmonics oscillators, simple pendulum						
	spherical pendulum, coupled oscillators, Cyclic coordinates,						
	Symmetries and conservation laws. Legendre transformations and the						
	Hamiltonian formulation of mechanics. Canonical equations of						
	motion. Applications to simple systems.						
	Deutici Differential Franchicus						
	Partial Differential Equations						
	variables: Laplace's Equation in problems of rectangular cylindrical and						
	spherical symmetry. Wave equation and its solution for vibrational						
	modes of a stretched string, rectangular and circular membranes.						
	Diffusion Equation.						
C5P	Mathematical Physics II Lab	02	Dr.	04	(04*15)		
	Introduction to Numerical computation using numpy and sciny		Wadut		=60		
	Introduction to the python numpy module Arrays in numpy array		Shaikh				
	operations, array item selection, slicing, shaping arrays. Basic linear						
	algebra using the linalg submodule. Introduction to online graph						
	plotting using matplotlib. Introduction to the scipy module. Uses in						

optimization and OCTAVE (if time pe	solution of differential equations. Introduction to ermits)		
Curve fitting, Leas	t square fit, Goodness of fit, standard deviation		
onnis law to calcu	ate it, hooke shaw to calculate spring constant		
Solution of Linear and Gauss Seidal matrix, Eigen vect	system of equations by Gauss elimination method method. Diagonalization of matrices, Inverse of a ors, eigen values problems		
Solution of mesh coupled spring ma	equations of electric circuits (3 meshes) Solution of ss systems (3 masses)		
Generation of Spe	cial functions using User defined functions		
Generating and plo Generating and Be	otting Legendre Polynomials Generating and plotting ssel function		
Solution of ODE Euler and Runge differential equati	First order Differential equation Euler, modified e- Kutta second order methods Second order on Fixed difference method		
First order differer	itial equation		
1.	Radioactive decay		
2.	Current in RC, LC circuits with DC source		
3.	Newton's law of cooling		
4.	Classical equations of motion Second order		
	Differential Equation		
5.	Harmonic oscillator (no friction)		
6.	Damped Harmonic oscillator		
7.	Over damped		
8.	Critical damped		
9.	Oscillatory		
10.	Forced Harmonic oscillator		
11.	Apply above to LCP circuits also		
	$2 d^2 y \qquad (d + 1) dy = 2 d^2 y$		
13.	Solve $x^2 \frac{1}{dx^2} - 4x(1+x)\frac{1}{dx} + 2(1+x)y = x^3$		
	with the boundary condition at $x = 1, y =$		
	$\frac{1}{2}e^{2}, \frac{dy}{dx} = -\frac{3}{2}e^{2} - 0.5$, in the range 1≤x≤3. Plot y		
	and $\frac{1}{dx}$ against x in the given range in the same graph.		
Partial differential	equations		
1	Wave equation		
1.			
2.			
3.	Poisson equation		
4.	Laplace equation		

C6T	Thermal Physics	04	Debasish	02	(04*15)
	Introduction to Thermodynamics Zeroth and First Law of Thermodynamics: Extensive and intensive Thermodynamic Variables, Thermodynamic Equilibrium, Zeroth Law of Thermodynamics & Concept of Temperature, Concept of Work & Heat, State Functions, First Law of Thermodynamics and its differential form, Internal Energy, First Law & various processes, Applications of First Law: General Relation between CP and CV, Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Co- efficient.		Das		=60
	Second Law of Thermodynamics: Reversible and Irreversible process with examples. Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin- Planck and Clausius Statements and their Equivalence.				
	Carnot's Theorem. Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale.				
	Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Universe. Entropy Changes in Reversible and Irreversible Processes. Principle of Increase of Entropy. Temperature–Entropy diagrams for Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero.				
	Thermodynamic Potentials Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations				
	Maxwell's Thermodynamic Relations Derivations and applications of Maxwell's Relations, Maxwell's Relations: (1) Clausius Clapeyron equation, (2) Values of Cp-Cv, (3) TdS Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process.		Arpita Das	02	
	Kinetic Theory of Gases				
	Distribution of Velocities: Maxwell-Boltzmann Law of Distribution of				

	 Velocities in an Ideal Gas and its Experimental Verification. Doppler Broadening of Spectral Lines and Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases. Molecular Collisions: Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance. Real Gases: Behavior of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. P-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule- Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule- Thomson Cooling. 				
C6P	 Thermal Physics Lab List of Practical To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flowmethod. To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT). To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions. To calibrate a thermocouple to measure temperature in a specified Range using (1) Null Method, (2) Direct measurement using Op-Amp difference amplifier and to determine Neutral Temperature 	02	Arpita Das	04	(04*15) =60
С7Т	Digital Systems and Applications Integrated Circuits Active & Passive components. Discrete components. Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI	04	Sourav Panda	04	(04*15) =60

	and VLSI (basic idea and definitions only). Classification of ICs. Examples of Linear and Digital ICs.				
	Digital Circuits Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application as Parity Checkers.				
	Boolean algebra De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map.				
	Data processing circuits Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders.				
	Circuits Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor.				
	Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip- Flops. Preset and Clear operations. Race-around conditions in JK Flip-Flop. M/S JK Flip- Flop.				
	Timers C 555: block diagram and applications: Astable multivibrator and Monostable multivibrator.				
	Shift registers Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-outShift Registers (only up to 4 bits).				
	Counters (4 bits) Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter.				
	Computer Organization Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. Memory Interfacing. Memory Map				
C7P	Digital Systems and Applications Lab	02	Sourav	04	(04*15)
	List of practical		Panda		=60
	1. To measure (a) Voltage, and (b) Time period of a				
	periodic waveform using CRO.				
	2. To test a Diode and Transistor using a Multimeter.				

	 To design a switch (NOT gate) using a transistor. To verify and design AND, OR, NOT and XOR gates using NAND gates. To design a combinational logic system for a specified Truth Table. To convert a Boolean expression into logic circuit and design it using logic gate ICs. To minimize a given logic circuit. Half Adder, Full Adder and 4-bit binary Adder. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates. To build JK Master-slave flip-flop using Flip-Flop ICs 12. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram. To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs. To design an astable multivibrator of given specifications using 555 Timer. 				
SEC1T	Electrical Circuits and Network Skills	02	Rupam	02	(02*15)
	 Basic Electricity Principles Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with multimeter, voltmeter and ammeter. Understanding Electrical Circuits Main electric circuit elements and their combination. Rules to analyze DC sourced electrical circuits. Current and voltage drop across the DC circuit elements. Single-phase and three- phase alternating current sources. Rules to analyze AC sourced electrical circuits. Real, imaginary and complex power components of AC source. Power factor. Saving energy and money. Electrical Drawing and Symbols Drawing symbols. Blueprints. Reading Schematics. Ladder diagrams. Electrical Schematics. Power circuits. Control circuits. Reading of circuit schematics. Tracking the connections of elements and identify current flow and voltage drop. Generators and Transformers DC Power sources. AC/DC generators. Inductance, capacitance, and impedance. Operation oftransformers. 		Mal		=30

	Electric Motors Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor Solid-State Devices Resistors, inductors and capacitors. Diode and rectifiers. Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources Electrical Protection Relays. Fuses and disconnect switches. Circuit breakers. Overload devices. Ground-fault protection. Grounding and isolating. Phase reversal. Surge protection. Interfacing DC or AC sources to control elements (relay protection device) Electrical Wiring Different types of conductors and cables. Basics of wiring-Star and				
	delta connection. Voltage drop and losses across cables and conductors. Instruments to measure current, voltage, power in DC and AC circuits. Insulation. Solid and stranded cable. Conduit. Cable trays. Splices: wirenuts, crimps, terminal blocks, split bolts, and solder. Preparation of extension board.				
	SEMESTER IV	•	•		
C8T	Mathematical Physics III	04	Dr.	02	(04*15)
	Complex Analysis Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, branch cuts. Integration of a function of a complex variable. Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem. Application in solving Definite Integrals. Integrals Transforms Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms		Wadut Shaikh		=60

	Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar and Unit Matrices. Upper-Triangular and Lower-Triangular Matrices. Transpose of a Matrix. Symmetric and Skew-Symmetric Matrices. Conjugate of a Matrix. Hermitian and Skew- Hermitian Matrices. Singular and Non-Singular matrices. Orthogonal and Unitary Matrices. Trace of a Matrix. Inner Product. Eigen-values and Eigenvectors Cayley- Hamiliton Theorem. Diagonalization of Matrices. Solutions of Coupled Linear Ordinary Differential Equations. Functions of a Matrix.		ta Sahoo		
C8P	Mathematical Physics III Lab List of practical 1. Solve differential equations: $\frac{dy}{dx} = e^{-x} with y = 0 f or x = 0$ $\frac{dy}{dx} + e^{-x} = x^{2}$ $\frac{d^{2}y}{dt^{2}} + 2\frac{dy}{dt} = -y$ $\frac{d^{2}y}{dt^{2}} + e^{-t}\frac{dy}{dt} = -y$ 2. Dirac Delta Function: Evaluate $\frac{1}{\sqrt{2\pi}a^{2}} \int e^{\frac{-(x-y)^{2}}{2a^{2}}} (x + 3) dx$, for $\sigma = 1, .1, .01$ and show it tends to 5 3. Fourier Series Program to sum $\sum_{n=1}^{\infty} (.2)^{n}$ Evaluate the Fourier coefficients of a given periodic function (square wave) 4. Frobenius method and Special functions: $\int_{-1}^{1} P_{n}(y)P_{m}(y)d\mu = \delta_{n,m}$ Plot $P_{n}(x), J_{n}(x)$ Show recursion relation 5. Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two). 6. Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program. 7. Evaluation of trigonometric functions e.g. sin 0, Given Bessel's function at N points find its value at an intermediate point. Complex analysis: Integrate $1/(x2+2)$ numerically and check with computer integration 8. Compute then thr oots of unity for n = 2, 3, and 4. 9. Find the two square roots of -5+12j. 10. Integral transform: FFT of e-x2	02	Dr. Wadut Shaikh	04	(04*15) =60
С9Т	Elements of Modern Physics Unit 1 Planck's quantum, Planck's constant and light as a collection of photons; Blackbody Radiation: Quantum theory of Light; Photo-	04	Rupam Mal	02	(04*15) =60

electric effect and Compton scattering. De Broglie wavelength and				
matter waves; Davisson-Germer experiment. Wave description of				
particles by wave packets. Group and Phase velocities and relation				
between them. Two-Slit experiment with electrons. Probability. Wave				
amplitude and wave functions.				
Unit 2				
Position measurement- gamma ray microscope thought experiment;				
Wave-particle duality. Heisenberg uncertainty principle (Uncertainty				
relations involving Canonical pair of variables). Derivation from Wave				
Packets impossibility of a particle following a trajectory: Estimating				
minimum energy of a confined particle using uncertainty principle:				
Energy time uncertainty principle, application to virtual particles and				
range of an interaction				
Two slit interference experiment with photons, atoms and particles;				
linear superposition principle as a consequence; Matter waves and				
wave amplitude; Schrodinger equation for non-relativistic particles;				
Momentum and Energy operators; stationary states; physical				
Interpretation of a wave function, probabilities and normalization;				
Probability and probability current densities in one dimension.				
Unit 2				
Unit 3 One dimensional infinitely rigid here energy eigenvalues and		Gourcha	02	
one dimensional infinitely rigid box- energy eigenvalues and		Courcila	02	
eigenfunctions, normalization; Quantum dot as example; Quantum		nd		
mechanical scattering and tunnelling in one dimension-across a step		Manna		
potential & rectangular potential barrier.		a		
Size and structure of atomic nucleus and its relation with atomic				
weight: Impossibility of an electron being in the nucleus as a				
consequence of the uncertainty principle. Nature of nuclear force, NZ				
graph, Liquid Drop model: semi-empirical mass formula and binding				
energy, Nuclear Shell Model and magic numbers.				
Linit 4				
Radioactivity: stability of the nucleus: Law of radioactive decay: Mean				
life and half-life: Alpha decay: Rata decay, energy released spectrum				
and Double prediction of poutring. Common row emission				
and Pauli's prediction of neutrino; Gamma ray emission, energy-				
momentum				
Conservation: electron-positron pair creation by gamma photons in				
the vicinity of a nucleus.				
Fission and fusion- mass deficit, relativity and generation of energy:				
Fission - nature of fragments and emission of neutrons. Nuclear				
reactor: slow neutrons interacting with Uranium 235; Eucion and				
reactor, slow neutrons interacting with ordinum 255, rusion dhu	1	1		
thermonuclear reactions driving stallar onormy (brief qualitative				
thermonuclear reactions driving stellar energy (brief qualitative				

	Lasers: Einstein's A and B coefficients. Metastable states. Spontaneou and Stimulated emissions. Optical Pumping and Population Inversion Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser. Basic lasing.	s			
C9P	Elements of Modern Physics Lab	02	Rupam Mal	04	(04*15) –60
	List of Practical		Mai		-00
	 Measurement of Planck's constant using black body radiation and photo-detector 				
	2. Photo-electric effect: photo current versus intensity and				
	wavelength of light; maximumenergy of photo-electrons				
	versus frequency of light				
	 To determine work function of material of filament of directly heated vacuum diode. 				
	 To determine the Planck's constant using LEDs of at least 4 different colours. 				
	 To determine the wavelength of H-alpha emission line of Hydrogen atom. 				
	6. To determine the ionization potential of mercury.				
	 To determine the absorption lines in the rotational spectrum of lodine vapour. 	n			
	8. To determine the value of e/m by (a) Magnetic focusing or(b) Bar magnet.				
	 To setup the Millikan oil drop apparatus and determine the charge of an electron. 				
	 To show the tunneling effect in tunnel diode using I-V characteristics. 				
	 To determine the wavelength of laser source using diffraction of single slit. 				
	 To determine the wavelength of laser source using diffraction of double slits. 				
	 To determine (1) wavelength and (2) angular spread of He- Ne laser using plane diffraction grating 				
C10T	Analog Systems and Applications	04	Sourav	02	(04*15)
	Semiconductor Diodes P and N type semiconductors. Energy Level Diagram. Conductivity an Mobility, Concept of Drift velocity. PN Junction Fabrication (Simp Idea). Barrier Formation in PN Junction Diode. Static and Dynam Resistance. Current Flow Mechanism in Forward and Reverse Biase Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Widt and Current for Step Junction. Current Flow Mechanism in Forwar and Reverse Biased Diode.	d e ic d h d	Panda		=60

Two-terminal Devices and their Applications Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full- wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode and (3) Solar Cell. Bipolar Junction transistors n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions.			
Field Effect transistors Basic principle of operations only.	Arpita Das	02	
Amplifiers Amplifiers: Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2- port Network. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class A, B & C Amplifiers. Frequency response of a CE amplifier.			
Coupled Amplifier: Two stage RC-coupled amplifier.			
Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise.			
Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators.			
Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground.			
Applications of Op-Amps: Linear - (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7) Zero crossing detector (8) Wein bridge oscillator. Non- linear – (1) inverting and non-inverting comparators, (2) Schmidt triggers.			
Conversion: Resistive network (Weighted and R-2R Ladder). Accuracy and Resolution. A/D Conversion (successive approximation)			

C10P	Analog S List of P	Systems and Applications Lab ractical	02	Arpita	04	(04*15)
	1.	To study V-I characteristics of PN junction diode, and Light emitting diode.		Das		-60
	2.	To study the V-I characteristics of a Zener diode and its use as voltage regulator.				
	3.	Study of V-I & power curves of solar cells, and find maximum power point & efficiency.				
	4.	To study the characteristics of a Bipolar Junction Transistor in CE configuration.				
	5.	To study the various biasing configurations of BJT for normal class A operation.				
	6.	To design a CE transistor amplifier of a given gain (mid- gain) using voltage divider bias.				
	7.	To study the frequency response of voltage gain of a RC-coupled transistor amplifier.				
	8.	To design a Wien bridge oscillator for given frequency using an op-amp.				
	9.	To design a phase shift oscillator of given specifications using BJT.				
	10.	To study the Colpitt's oscillator.				
	11.	To design a digital to analog converter (DAC) of given specifications.				
	12.	To study the analog to digital convertor (ADC) IC.				
	13.	To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain				
	14.	To design inverting amplifier using Op-amp (741,351) and study its frequency response				
	15.	To design non-inverting amplifier using Op-amp (741,351) & study its frequency response				
	16.	To study the zero-crossing detector and comparator				
	17.	To add two dc voltages using Op-amp in inverting and non- inverting mode				
	18.	To design a precision Differential amplifier of given I/O specification using Op-amp.				
	19.	To investigate the use of an op-amp as an Integrator.				
	20.	To investigate the use of an op-amp as a Differentiator.				
	21.	To design a circuit to simulate the solution of a 1st/2nd order differential equation.				

		1			
SEC2T	Basic of Measurement	01	Dr.	01	(01*15)
	Basic of Measurement		Wadut		=15
	Instruments accuracy, precision, sensitivity, resolution range etc.		Shaikh		
	Errors in measurements and loading effects. Multimeter: Principles of		Onaixi		
	measurement of dc voltage and dc current, ac voltage, ac current and				
	resistance. Specifications of a multimeter and their significance.				
	Electronic Voltmeter				
	Advantage over conventional multimeter for voltage measurement				
	with respect to input impedance and sensitivity. Principles of voltage,				
	measurement (block diagram only). Specifications of an electronic				
	Voltmeter/ Multimeter and their significance. AC millivoltmeter: Type				
	diagram ac millivoltmeter specifications and their significance				
	Cathode Ray Oscilloscope				
	Block diagram of basic CRO. Construction of CRT, Electron gun,				
	electrostatic focusing and acceleration (Explanation only - no				
	mathematical treatment), brief discussion on screen phosphor,				
	visual persistence & chemical composition. Time base operation,				
	synchronization. Front panel controls. Specifications of a CRO and				
	their significance.				
	Use of CRO for the measurement of voltage (dc and ac frequency,				
	time period. Special features of dual trace, introduction to digital				
	oscilloscope, probes. Digital storage Oscilloscope: Block diagram and				
	principle of working.				
	Signal Generators and Analysis Instruments				
	Block diagram, explanation and specifications of low frequency				
	signal generators. Pulse generator, and function generator. Brief				
	idea for testing, specifications. Distortion factor meter, wave analysis.				
	Impedance Bridges & Q-Meters				
	Block diagram of bridge: working principles of basic (balancing				
	type) RLC bridge. Specifications of RLC bridge. Block diagram &				
	working principles of a Q- Meter. Digital LCR bridges.				
	Digital Instruments				
	Principle and working of digital meters. Comparison of analog &				
	digital instruments. Characteristics of a digital meter. Working				
	principles of digital voltmeter.				
	Digital Multimeter				
	Block diagram and working of a digital multimeter. Working principle				
	of time interval, frequency				
	and period measurement using universal counter/ frequency				
	counter, time- base stability, accuracy and resolution.				

SEC2P	Basic of	Measurement Lab	01	Dr.	02	(02*15)
	List of P	List of Practical		Wadut		=30
				Shaikh		
	A: The te	est of lab skills will be of the following test items				
	1.	Use of an oscilloscope.				
	2.	CRO as a versatile measuring device.				
	3.	Circuit tracing of Laboratory electronic equipment,				
	4.	Use of Digital multimeter/VTVM for measuring voltages				
	5.	Circuit tracing of Laboratory electronic equipment,				
	6.	Winding a coil / transformer.				
	7.	Study the layout of receiver circuit.				
	8.	Trouble shooting a circuit				
	9.	Balancing of bridges				
	B: Labora	atory Exercises				
	1.	To observe the loading effect of a multimeter while				
		measuring voltage across a lowresistance and high				
		resistance.				
	2.	To observe the limitations of a multimeter for				
		measuring high frequency voltage andcurrents.				
	3.	To measure Q of a coil and its dependence on frequency, using a Q- meter.				
	4.	Measurement of voltage, frequency, time period and phase angle using CRO.				
	5.	Measurement of time period, frequency, average period				
		using universal counter/frequency counter.				
	6.	Measurement of rise, fall and delay times using a CRO.				
	7.	Measurement of distortion of a RF signal generator using distortion factor meter.				
	8.	Measurement of R, L and C using a LCR bridge/ universal bridge.				
	C: Open	Ended Experiments				
		1. Using a Dual Trace Oscilloscope				
		 Converting the range of a given measuring 				

SEMESTER V						
C11P	Quantum Mechanics and Applications	04	Gourcha	02	(04*15)	
	Columnation of the second s		nd		=60	
	Schrodinger equation		Manna			
	of a quantumstate: Properties of Wave Function. Interpretation		Marina			
	of Wave Function Probability and probability current densities					
	in three dimensions; Conditions for Physical Acceptability of					
	Wave Functions. Normalization. Linearity and Superposition					
	Principles. Eigenvalues and Eigenfunctions. Position,					
	momentum and Energyoperators; commutator of position and					
	momentum operators; Expectation values of position and					
	Time independent Schrodinger equation-Hamiltonian					
	stationary states and energy eigenvalues; expansion of					
	anarbitrary wave function as a linear combination of energy					
	eigen functions; General solution of the time dependent					
	Schrodinger equation interms of linear combinations of					
	stationary states; Application to spread of Gaussian wave-					
	Fourier transforms and momentum space wave function:					
	Position- momentum uncertainty principle.					
	General discussion of bound states in an arbitrary potential					
	Continuity of wave function, boundary condition and					
	dimensional problem-square well potential. Quantum					
	mechanics of simple harmonic oscillator-energy levels and					
	energy eigenfunctions using Frobenius method;					
	Hermitepolynomials; ground state, zero point energy &					
	uncertainty principle.					
	Quantum theory of hydrogen-like atoms		Rupam	02		
	Time independent Schrodinger equation in spherical polar		Mal			
	differential equation: angular momentum operator & quantum					
	numbers: Radial wave functions from Frobenius method					
	shapes of the probability densities for ground & first excited					
	states; Orbital angula rmomentum quantum numbers I and					
	m;s,p,d,shells					
	Atoms in Electric & Magnetic Fields					
	Electron angular momentum. Space quantization. Electron					
	Spinand Spin Angular Momentum. Larmor's Theorem. Spin					
	Magnetic Moment. Stern-Gerlach Experiment. Zeeman Effect:					

	 Electron Magnetic Moment and Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton Atoms in External Magnetic Fields Normal and Anomalous ZeemanEffect. Paschen Back and Stark Effect (QualitativeDiscussiononly). Many electron atoms Pauli's Exclusion Principle. Symmetric & Antisymmetric WaveFunctions. Periodictable. Finestructure. Spinorbit coupling. Spectral Notations for Atomic States. Total angular momentum.Vector Model. Spin-orbit coupling in atoms - L- S and J-J couplings. Hund's Rule. Term symbols. Spectra of Hydrogen and Alkali Atoms (Na etc.).				
C11P	<section-header><section-header><section-header><section-header><text><equation-block><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></equation-block></text></section-header></section-header></section-header></section-header>	02	Dr. Wadut Shaikh	04	(04*15) =60
	significant digits. Also plot the corresponding wave function. Take m= 940 x 10^6 eV/C ² , D=0.755501 eV, α =1.44, r_0 =0.131349 Å				

	 Laboratory based experiments: Study of Electron spin resonance- determine magnetic field as a function of the resonancefrequency Study of Zeeman effect: with external magnetic field; Hyperfine splitting To show the tunneling effect in tunnel diode using I-V characteristics. Quantum efficiency of CCDs 				
C12T	 Solid State Physics Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis– Central and Non-Central Elements. Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor. Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrumin Solids. Dulong and Petit'sLaw, Einstein and Debye theories of specific heat of solids.T3 law Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia – and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss'sTheory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss. 	04	Debasish Das	02	(04*15) =60
	Dielectric Properties of Materials Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons, TO modes.		Arpita Das	02	
	Structural phase transition, Classification of crystals, Piezo electric effect, Pyro electric effect, Ferro electric effect, Electrostrictive effect, Curie-Weiss Law, Ferroelectric domains, PE hysteresis loop.				

	Elementary band theory Kronig Penny model. Band Gap. Conductor, Semiconductor (PandNtype) and insulator. Conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (04 probe method) & Hall coefficient. Superconductivity Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type land type II Superconductors, London's Equation and Penetration Depth. Isotopeeffect. Idea of BCS theory (Noderivation)				
C12P	Solid State Physics Lab	02	Debasish	04	(04*15)
			Das		=60
	List of Dynaticals		240		
	 Measurement of susceptibility of paramagnetic solution (Quinck`s Tube Method) 				
	2. To measure the Magnetic susceptibility of Solids.				
	3. To determine the Coupling Coefficient of a Piezoelectric crystal.				
	4. To measure the Dielectric Constant of a dielectric Materials with frequency				
	5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)				
	6 To determine the refrective index of a disloctric layer using CDD				
	0. To determine the refractive index of a dielectric layer using SPR				
	7. To study the PE Hysteresis loop of a Ferroelectric Crystal.				
	8. To draw the BH curve of Fe using Solenoid & determine energy loss from Hysteresis.				
	9. To measure the resistivity of a semiconductor (Ge) with				
	temperature by four-probe method (room temperature to				
	150 $^{\circ}$ C) and to determine its band gap.				
	$10.\ { m To}\ { m determine}\ { m the}\ { m Hall}\ { m coefficient}\ { m of}\ { m a}\ { m semiconductor}\ { m sample}.$				
DSE1T	Classical Dynamics	06	Sourav	03	(06*15)
			Panda		=90
	Classical Mechanics of Point Particles Review of Newtonian Mechanics: Application to the motion of a				
	charge particle in external electric and magnetic fields- motion in				
	uniform electric field, magnetic field- gyroradius and gyrofrequency,				
	motion in crossed electric and magnetic fields. Generalized				
	coordinates and velocities,				
	Hamiltonian for a harmonic oscillator solution of Hamilton's equation				
	for Simple Harmonic Oscillations; particle in a central force field-				

	conservation of angular momentum and energy. Effective potential. The Laplace- Runge-Lenz vector. Small Amplitude Oscillations Minima of potential energy and points of stable equilibrium, expansion of the potential energy around a minimum, small amplitude oscillations about the minimum, normal modes of oscillations example of N identical masses connected in a linear fashion to (N -1) - identical springs. Special Theory of Relativity Postulates of Special Theory of Relativity. Lorentz Transformations. Minkowski space. The invariant interval, light cone and world lines. Space-time diagrams. Time-dilation, length contraction and twin paradox. Four-vectors: space-like, time-like and light-like. Four- velocity and acceleration. Metric and alternating tensors. Four- momentum and energy-momentum relation. Doppler effect from a four-vector perspective. Concept of four-force. Conservation of four- momentum. Relativistic kinematics. Application to two-body decay of an unstable particle. Fluid Dynamics Density ρ and pressure P in a fluid, an element of fluid and its velocity, continuity equation and mass conservation, stream-lined motion, laminar flow, Poiseuille's equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of turbulence, Reynolds number.		Rupam Mal	03	
DOFOT	Nuclear and Particle Dhysics		-		(00+45)
DSE2T	Nuclear and Particle Physics General Properties of Nuclei : Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states. Nuclear Models : Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force.	06	Dr. Wadut Shaikh	03	(06*15) =90

	Radioactivity decay : Alpha decay: basics of α -decay processes, theory of α - emission, Gamow factor, Geiger Nuttall law, α -decay spectroscopy. (b) β -decay: energy kinematics for β -decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion.				
	Particle physics :				
	Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model, color quantum number and gluons.				
	Nuclear Reactions : Types of Reactions, Conservation Laws, kinematics of reactions, Q- value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction, Coulomb scattering (Rutherford scattering).		Gourcha nd Manna	03	
	Interaction of Nuclear Radiation with matter : Energy loss due to ionization (Bethe- Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter.				
	Detector for Nuclear Radiations : Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (conceptof charge carrier and mobility), neutron detector.				
	Particle Accelerators : Accelerator facility available in India: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.				
	SEMESTER VI				
C13T	Electromagnetic Theory	04	Arpita	02	(04*15)
	Maxwell Equations Maxwell's equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density, Momentum Density and Angular Momentum Density.		Das		=60

	 EM Wave Propagation in Unbounded Media Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth. Wave propagation through dilute plasma, electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere. EM Wave in Bounded Media Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases, Brewster's law. Reflection & Transmission coefficients. Total internal reflection, evanescent waves. Metallic reflection (normal Incidence). Polarization of Electromagnetic Waves Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light. Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half-shade polarimeter. Wave guides Planar optical wave guides. Planar dielectric wave guide. Condition of continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase		Debasish Das	02	
C13P	Electromagnetic Theory (Lab)	02	Debasish	04	(04*15)
	List of Practical		Das		=60
	1 To work the low of Malus few slaves we have all the				
	 I o verify the law of Malus for plane polarized light. To determine the exactly retaining of every relation. 				
	2. To determine the specific rotation of sugar solution using Polarimeter.				

	3.	To analyze elliptically polarized Light by using a Babinet's compensator.				
	4.	To study dependence of radiation on angle for a simple Dipole antenna.				
	5.	To determine the wavelength and velocity of				
		ultrasonic waves in a liquid (Kerosene Oil, Xylene, etc.)				
		by studying the diffraction through ultrasonic grating.				
	6.	To study the reflection, refraction of microwaves.				
	7.	To study Polarization and double slit interference in microwaves.				
	8.	To determine the refractive index of				
		liquid by total internal				
		reflection usingWollaston's air-film.				
	9.	To determine the refractive Index of (1) glass and (2)				
		a liquid by total internal reflection using a Gaussian				
		eyepiece.				
	10	. To study the polarization of light by reflection and				
		determine the polarizing angle for air-glass interface.				
	11	. To verify the Stefan`s law of radiation and to determine Stefan's constant.				
	12	. To determine the Boltzmann constant using V-I characteristics of PN junction diode.				
04.47	Statistica	Mechanics	04	Osumaha	04	(0.4+4.5)
C141	Statistica		04	Gourcna	01	(04°15) –60
	Classical S	tatistical Mechanics		na		-60
	Microcand	onical ensemble, Phase Space, Entropy and Thermodynamic		Manna		
	Probability	y, Canonical ensemble, Partition Function, Thermodynamic				
	Sackur Tet	rode equation, Law of Equipartition of Energy (with proof) –				
	Applicatio	ns to Specific Heat and its Limitations, Thermodynamic				
	Grand can	onical ensemble and chemical potential.				
				Dr	03	
	Classical T	heory of Radiation		Wadut		
	Properties	of Thermal Radiation. Blackbody Radiation. Pure		madul		

	temperature dependence. Kirchhoff's law. Stefan-Boltzmann law: Thermodynamic proof. Radiation Pressure. Wien's Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh-Jean's Law. Ultraviolet Catastrophe. Quantum Theory of Radiation Spectral Distribution of Black Body Radiation. Planck's Quantum Postulates. Planck's Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien's Distribution Law, (2) Rayleigh- Jeans Law, (3) Stefan-Boltzmann Law, (4) Wien's Displacement law from Planck's law. Bose-Einstein Statistics: distribution law, Thermodynamic functions of a strongly Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas. Bose derivation of Planck's law. Fermi-Dirac Statistics: Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit.		Shaikh		
C14P	Statistical Mechanics Lab	02	Dr.	04	(04*15)
	List of Drastical		Wadut		=60
	1. Computational analysis of the behavior of a collection of		Shaikh		
	particles in a box that satisfy Newtonian mechanics and				
	interact via the Lennard-Jones potential, varying the total				
	numberof particles N and the initial conditions:				
	a) Study of local number density in the equilibrium state(i) average; (ii) fluctuations.				
	b) Study of transient behavior of the system (approach to equilibrium).				
	c) Relationship of large N and the arrow of time.				
	d) Computation of the velocity distribution of particles				
	for the system and comparison with the Maxwell				
	velocity distribution.				
	 e) Computation and study of mean molecular speed and its dependence on particle mass. 				

				L	1	-
		f) Computation of fraction of molecules in an ideal				
		gas having speed near the mostprobable speed.				
	2.	Computation of the partition function $Z(\mathbb{D})$ for examples				
		of systems with a finite number of single particle levels				
		(e.g., 2 level, 3 level, etc.) and a finite number of non-				
		interacting particles N under Maxwell-Boltzmann, Fermi-				
		Dirac and Bose- Einstein statistics:				
		a) Study of how Z(2), average energy <e>, energy</e>				
		fluctuation $\ensuremath{\mathbb{Z}} E$, specific heat at constant volume C_v ,				
		depend upon the temperature, total number of				
		particles N and the spectrum of single particle states.				
		b) Ratios of occupation numbers of various states for the systems considered above				
		c) Computation of physical quantities at large and small				
		temperature T and comparison of various statistics				
		at large and small temperature T.				
	3.	Plot Planck's law for Black Body radiation and compare it				
		with Raleigh-Jeans Law at high temperature and low				
		temperature.				
	4.	Plot Specific Heat of Solids (a) Dulong-Petit law, (b)				
		Einstein distribution function, (c) Debye distribution				
		function for high temperature and low temperature and				
		compare them forthese two cases.				
	5.	Plot the following functions with energy at different temperatures				
		a) Maxwell-Boltzmann distribution				
		b) Fermi-Dirac distribution				
		c) Bose-Einstein distribution				
DSE3T	Commun	ication Electronics	04	Sourav	02	(04*15)
	Electronic Introducti modulatio Brief idea India (TF	communication on to communication – means and modes. Need for n. Block diagram of an electronic communication system. of frequency allocation for radio communication system in RAI). Electromagnetic communication spectrum, band		Panda		=60

	designations and usage. Channels and base-band signals. Concept of Noise, signal-to-noise (S/N) ratio.				
	 Analog Modulation Amplitude Modulation, modulation index and frequency spectrum. Generation of AM (Emitter Modulation), Amplitude Demodulation (diode detector), Concept of Single side band generation and detection. Frequency Modulation (FM) and Phase Modulation (PM), modulation index and frequency spectrum, equivalence between FM and PM, Generation of FM using VCO, FM detector (slope detector), Qualitative idea of Super heterodyne receiver. Analog Pulse Modulation Channel capacity, sampling theorem, Basic Principles- PAM, PWM, PPM, modulation and detection technique for PAM only, Multiplexing. Digital Pulse Modulation Need for digital transmission, Pulse Code Modulation, Digital Carrier Modulation Techniques, Sampling, Quantization and Encoding. Concept of Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), and Binary Phase Shift Keying (BPSK). 				
	Introduction to Communication and Navigation systems: Satellite Communication - Introduction, need, geosynchronous satellite orbits geostationary satellite advantages of geostationary satellites. Satellite visibility, transponders (C - Band), path loss, ground station, simplified block diagram of earth station. Uplink and downlink.		Debasish Das	02	
	Mobile Telephony System – Basic concept of mobile communication, frequency bands used in mobile communication, concept of cell sectoring and cell splitting, SIM number, IMEI number, need for data encryption, architecture (block diagram) of mobile communication network, idea of GSM, CDMA, TDMA and FDMA technologies, simplified block diagram of mobile phone handset, 2G, 3G and 4G concepts (qualitative only). GPS navigation system (qualitative idea only).				
DSE3P	Communication Electronics Lab	02	Sourav	04	(04*15)
	List of Practical		Panda		=60
	1. To design an Amplitude Modulator using Transistor.				
	2. To study envelope detector for demodulation of AM signal.				
	3. To study FM - Generator and Detector circuit.				
	4. To study AM Transmitter and Receiver.				
	5. To study FM Transmitter and Receiver.				
	6. To study Time Division Multiplexing (TDM).				

	 To study Pulse Amplitude Modulation (PAM). To study Pulse Width Modulation (PWM). To study Pulse Position Modulation (PPM). To study ASK, PSK and FSK modulators. 				
DSE4T	Experimental Techniques Measurements Accuracy and precision. Significant figures. Error and uncertainty analysis. Types of errors: Gross error, systematic error, random error. Statistical analysis of data (Arithmetic mean, deviation from mean, average deviation, standard deviation, chi-square) and curve fitting. Guassian distribution. Signals and Systems Periodic and aperiodic signals. Impulse response, transfer function and frequency response of first and second order systems. Fluctuations and Noise in measurement system. S/N ratio and Noise figure. Noise in frequency domain. Sources of Noise: Inherent fluctuations, Thermal noise, Shot noise, 1/f noise. Shielding and Grounding Methods of safety grounding. Energy coupling. Grounding. Shielding: Electrostatic shielding. Electromagnetic Interference Transducers &industrial instrumentation(working principle, efficiency, applications) Static and dynamic characteristics of measurement Systems. Generalized performance of systems. Zero order first order, second order and higher order systems. Electrical, Thermal and Mechanical systems. Calibration. Transducers and sensors. Characteristics of Transducers. Transducers as electrical element and their signal conditioning. Temperature transducers: RTD, Thermistor, Thermocouples, Semiconductor type temperature sensors (AD590, LM35, LM75) and signal conditioning. Linear Position transducer: Strain gauge, Piezoelectric. Inductance change transducer: Linear variable differential transformer (LVDT), Capacitance change transducers. Radiation Sensors: Principle of Gas filled detector,	04	Dr. Wadut Shaikh Rupam Mal	01	(04*15) =60
	Digital Multimeter Comparison of analog and digital instruments. Block diagram of digital multimeter, principle of measurement of I, V, C. Accuracy and resolution of measurement.		Gourcha nd Manna	01	

-				1		
	Impedance Block diag working o Vacuum S Characteri vacuum.	e Bridges and Q-meter gram and working principles of RLC Bridge. Q - meter and its peration. Digital LCR bridge. ystems istics of vacuum: Gas law, Mean free path. Application of Vacuum system- Chamber, Mechanical pumps, Diffusion				
	pump & (Pirani, Pe	Turbo Modular pump, Pumping speed, Pressure gauges nning, ionization).				
	Evnorime	antal Tachniquae Lab		_	•	
DSE4P	Listof		02	Rupam	04	(04*15)
	LISUOTP			Mal		=60
	1.	Determine output characteristics of a LVDT & measure displacement using LVDT				
	2.	Measurement of Strain using Strain Gauge.				
	3.	Measurement of level using capacitive transducer.				
	4.	To study the characteristics of a Thermostat and determine its parameters.				
	5.	Study of distance measurement using ultrasonic transducer.				
	6.	Calibrate Semiconductor type temperature sensor (AD590, LM35, or LM75)				
	7.	To measure the change in temperature of ambient using				
		Resistance Temperature Device (RTD).				
	8.	Create vacuum in a small chamber using a				
		mechanical (rotary) pump and measure the chamber				
		pressure using a pressure gauge.				
	9.	Comparison of pickup of noise in cables of different types				
		(co-axial, single shielded, double shielded, without				
		shielding) of 2m length, understanding of importance of				
		grounding using function generator of mV level & an				
		oscilloscope.				
	10.	To design and study the Sample and Hold Circuit.				
	11.	Design and analyze the Clippers and Clampers circuits using junction diode				

	12. To plot the frequency response of a microphone.13. To measure Q of a coil and influence of frequency, using a Q-meter				
	Generic Elective (GE) (For others depa	artment	students)		
	SEMESTER III				
GE3T	Solid State Physics	04	Dr.	02	(04*15)
	 Crystal Structure Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor. Elementary Lattice Dynamics Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T3 law Magnetic Properties of Matter Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia – and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss. 		Wadut Shaikh		=60
	 Dielectric Properties of Materials Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons. Elementary band theory Kronig Penny model. Band Gaps. Conductors, Semiconductors and insulators. P and N type Semiconductors. Conductivity of Semiconductors, mobility, Hall Effect, Hall coefficient. Superconductivity Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect. 		Debasish Das	02	

GE3P	List of Practical	02	Debasish	04	(04*15)
	 Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method) To measure the Magnetic susceptibility of Solids. To determine the Coupling Coefficient of a piezoelectric crystal. To measure the Dielectric Constant of a dielectric Materials with frequency To determine the complex dielectric constant and plasma frequency of metal usingSurface Plasmon resonance (SPR) To study the PE Hysteresis loop of a Ferroelectric Crystal. To study the BH curve of iron using a Solenoid and determine the energy loss. To measure the resistivity of a semiconductor (Ge) crystal with temperature by four- probe method (room temperature to 150 oC) and to determine its band gap. To determine the Hall coefficient of a semiconductor sample. 		Das Rupam Mal		=60
GE4T	Electricity and Magnetism Vector Analysis Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). Electrostatics Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric.	04	Rupam Mal	02	(04*15) =60

	Magnetism Magnetostatics: Biot-Savart's law and its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para-and ferro- magnetic materials.		Gourcha nd Manna	01	
	Electromagnetic Induction Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M oftwo coils. Energy stored in magnetic field.		Debasish Das	01	
	Maxwell's equations and Electromagnetic wave propagation Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectricmedium, transverse nature of EM waves, polarization.				
GE4P	Electricity and Magnetism Lab	02	Sourav	04	(04*15)
	List of Practical		Panda		=60
	1. To use a Multimeter for measuring		D.L		
	a. Resistances		Debasish		
	b. AC and DC Voltages		Das		
	c. DC Current				
	d. Checking electrical fuses.				
	2. Ballistic Galvanometer:				
	a. Measurement of charge and current sensitivity				
	b. Measurement of CDR				
	c. Determine a high resistance by Leakage Method				
	 To determine Self Inductance of a Coil by Rayleigh's Method. 				
	3. To compare capacitances using De'Sauty's bridge.				
	 Measurement of field strength B and its variation in a Solenoid (Determine dB/dx) 				
	5. To study the Characteristics of a Series RC Circuit.				
	6. To study a series LCR circuit LCR circuit and determine its				
	a. Resonant frequency				

	b Quality factor				
	7 To study a parallel LCR circuit and determine its:				
	a Anti-resonant frequency and				
	b Quality factor Q				
	8 To determine a Low Resistance by Carey Foster's Bridge				
	9 To verify the Thevenin and Norton theorems				
	To verify the Superposition, and Maximum Power Transfer Theorems				
	B.Sc Pass	1	I	1	I
	SEMESTER I				
DSC1A-C	Mechanics	04	Rupam	02	(04*15)
	Course Contents Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter.		Mal		=60
	Ordinary Differential Equations:				
	1st order homogeneous differential equations. 2 nd order homogeneous differential equations with constant coefficients.				
	Laws of Motion: Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass.				
	Momentum and Energy: Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets.				
	Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum.				
	Gravitation: Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).				
	Oscillations: Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations.		Sourav Panda	02	
	Elasticity:				

	Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire - Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion – Torsional pendulum- Determination of Rigidity modulus and moment of inertia - q, η and σ by Searles method Special Theory of Relativity: Constancy of speed of light. Postulates of Special Theory of elativity. Length contraction. Time dilation. Relativistic addition of velocities.				
DSC1A-P	 Mechanics Lab Practical: Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope. To determine the Height of a Building using a Sextant. To determine the Moment of Inertia of a Flywheel. To determine the Young's Modulus of a Wire by Optical Lever Method. To determine the Modulus of Rigidity of a Wire by Maxwell's needle. To determine the Elastic Constants of a Wire by Searle's method. To determine g by Bar Pendulum. To determine g and velocity for a freely falling body using Digital Timing Technique To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g 	02	Rupam Mal	04	(04*15) =60
	SEMESTER II				
DSC1B-T	Electricity and Magnetism	04	Dobasish	02	(0/*15)
	 Vector Analysis: Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem - Electric field due to point charge, infinite line of shares uniformly charged schedule and schedul		Das		=60
	sphere, plane or charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric ipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation,				

	Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric.				
	Magnetism: Magnetostatics: Biot-Savart's law & its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para- and ferro-magnetic materials. Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field.		Gourcha nd Manna	02	
	Maxwell's equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic electric medium, transverse nature of EM waves, polarization.				
DSC1B-P	Electricity and Magnetism	02	Gourcha	04	(04*15)
	 Practical: To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses. Ballistic Galvanometer: Measurement of charge and current sensitivity Measurement of CDR Determine a high resistance by Leakage Method To determine Self Inductance of a Coil by Rayleigh's Method. To compare capacitances using De'Sauty's bridge. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx). To study the Characteristics of a Series RC Circuit. To study the a series LCR circuit and determine its (a) Resonant Frequency, (b) Quality Factor To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q To determine a Low Resistance by Carey Foster's Bridge. 		nd Manna		=60
	SEMESTER III				
DSC1C-T	Thermal Physics and Statistical Mechanics Laws of Thermodynamics: Thermodynamic Description of system: Zeroth Law of thermodynamics and temperature First law and internal energy	04	Debasish Das	04	(04*15) =60
	conversion of heat into work, Various Thermodynamical Processes, Applications of First Law: General Relation between CP & CV. Work				

	Done during Isothermal and Adiabatic Processes, Compressibility & Expansion Coefficient, Reversible & irreversible processes, Second law & Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes, Entropy-temperature diagrams, Third law of thermodynamics, Unattainability of absolute zero. Thermodynamic Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations & applications - Joule-Thompson Effect, Clausius- Clapeyron Equation, Expression for (CP – CV), CP/CV, TdS equations. Kinetic Theory of Gases: Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases. Theory of Radiation: Blackbody radiation, Spectral distribution, Concept of Energy Density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law.				
	Statistical Mechanics: Phase space, Macrostate and Microstate, Entropy and Thermodynamic probability, Maxwell-Boltzmann law - distribution of velocity - Quantum statistics - Fermi- irac distribution law - electron gas - Bose-Einstein distribution law - photon gas -				
	comparison of three statistics.				
DSC1C-P	Thermal Physics and Statistical Mechanics (lab)	02	Debasish	04	(04*15)
	List of Practical	02	-	04	
	1. To determine Mechanical Equivalent of Heat, J, by		Das		=60
	Callender and Barne's constant flow method.				
	2. Measurement of Planck's constant using black body				
	radiation.				
	3. To determine Stefan's Constant.				
	4. To determine the coefficient of thermal conductivity of				
	5. To determine the Coefficient of Thermal Conductivity of Cu				
	by Angstrom's Method.				
	6. To determine the coefficient of thermal conductivity of a				
	bad conductor by Lee and Charlton's disc method.				
	7. To determine the temperature co-efficient of resistance by				
	Platinum resistance thermometer.				
	8. To study the variation of thermo emf across two junctions				
	or a thermocouple with temperature.				
	object as a function of time using a thermocouple and				
	suitable data acquisition system.				
	10. To calibrate Resistance Temperature Device (RTD) using				
	Null Method/Off-Balance Bridge				

SEMESTER IV						
DSC1D-T	Waves and Optics	04	Gourcha	04	(04*15)	
	Superposition of Two Collinear Harmonic oscillations: Linearity and Superposition Principle. (1) Oscillations having equal frequencies and (2) Oscillations having different frequencies (Beats).		nd Manna		=60	
	Superposition of Two Perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures with equal an unequal frequency and their uses.					
	Waves Motion- General: Transverse waves on a string. Travelling and standing waves on a string. Normal Modes of a string. Group velocity, Phase velocity. Plane waves. Spherical waves, Wave intensity.					
	Fluids: Surface Tension: Synclastic and anticlastic surface - Excess of pressure - Application to spherical and cylindrical drops and bubbles - variation of surface tension with temperature - Jaegar's method. Viscosity: Viscosity - Rate flow of liquid in a capillary tube - Poiseuille's formula - Determination of coefficient of viscosity of a liquid - Variations of viscosity of a liquid with temperature lubrication. Physics of low pressure - production and measurement of low pressure - Rotary pump - Diffusion pump - Molecular pump - Knudsen absolute gauge - penning and pirani gauge – Detection of leakage.					
	Sound: Simple harmonic motion - forced vibrations and resonance - Fourier's Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound - Decibels - Intensity levels - musical notes - musical scale. Acoustics of buildings: Reverberation and time of reverberation - Absorption coefficient - Sabine's formula - measurement of reverberation time - Acoustic aspects of halls and auditoria.					
	Wave Optics: Electromagnetic nature of light. Definition and Properties of wave front. Huygens Principle.					
	Interference: Interference: Division of amplitude and division of wavefront. Young's Double Slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal nclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: measurement of wavelength and refractive index.					
	Michelson's Interferometer: Idea of form of fringes (no theory needed), Determination of wavelength, Wavelength difference, Refractive index and Visibility of fringes.					

i.						
		 Diffraction: Fraunhofer diffraction: Single slit; Double Slit. Multiple slits & Diffraction grating. Fresnel Diffraction: Half-period zones. Zone plate. Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. Polarization: Transverse nature of light waves. Plane polarized light – production and analysis. Circular and elliptical polarization. 				
	DSC1D-P	Waves and Optics (lab)	02	Gourcha	04	(04*15)
		Practical:	02			
		1. To investigate the motion of coupled oscillators		nd		=60
		2. To determine the Frequency of an Electrically Maintained		Manna		
		Tuning Fork by Melde's Experiment and to verify $\lambda 2$ – T Law.				
		3. To study Lissajous Figures				
		4. Familiarization with Schuster's focussing; determination of				
		angle of prism.				
		5. To determine the coefficient of viscosity of water by Capillary Flow Method (Poiseuille's method)				
		6. To determine the Refractive Index of the Material of a				
		given Prism using Sodium Light.				
		7. To determine Dispersive Power of the Material of a given				
		Prism using Mercury Light				
		8. To determine the value of Cauchy Constants of a material				
		of a prism.				
		9. To determine the Resolving Power of a Prism.				
		10. To determine wavelength of sodium light using Freshel				
		BIPTISTI.				
		Rings				
		12. To determine the wavelength of Laser light using				
		Diffraction of Single Slit.				
		13. To determine wavelength of (1) Sodium & (2) spectrum of				
		Mercury light using plane diffraction Grating				
		14. To determine the Resolving Power of a Plane Diffraction				
		Grating.				
		15. To measure the intensity using photosensor and laser in				
		diffraction patterns of single and double slits				
	SEC2-T	Basic Instrumentation Skills	01	01	Dr.	(01*15)
					Wadut	=15
		Basic of Measurement: Instruments accuracy, precision, sensitivity,			o	10
		resolution range etc. Errors in measurements and loading effects.			Shaikh	
		Multimator: Drinciples of measurement of devoltage and de surrent				
		ac voltage ac current and resistance. Specifications of a multimeter				
		and their significance.				
		Electronic Voltmeter: Advantage over conventional multimeter for				
		voltage measurement with respect to input impedance and sensitivity.				

	 Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance. AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance. Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only– no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance. Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working. Signal Generators and Analysis Instruments: Block diagram, explanation and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis. Impedance Bridges & Q-Meters: Block diagram of bridge. working principles of basic (balancing type) RLC bridge. Specifications of RLC bridge. Block diagram & working principles of a Q- Meter. Digital LCR bridges. Digital Instruments: Principle and working of digital meters. Comparison of analog & digital instruments. Characteristics of a digital meter. Working principles of digital voltmeter. Digital Multimeter: Block diagram and working of a digital multimeter. 				
SEC2-P	Basic Instrumentation Skills Lab	01	D	00	(00*45)
	 The test of lab skills will be of the following test items: Use of an oscilloscope. CRO as a versatile measuring device. Circuit tracing of Laboratory electronic equipment, Use of Digital multimeter/VTVM for measuring voltages Circuit tracing of Laboratory electronic equipment, Winding a coil / transformer. Study the layout of receiver circuit. Trouble shooting a circuit Balancing of bridges 		Wadut Shaikh	02	=30

SEMESTER V								
DSE1T	Elements of Modern Physics	04	Rupam	04	(04*15)			
	Planck's quantum, Planck's constant and light as a collection of photons; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson- Germer experiment		Mal		=60			
	Problems with Rutherford model- instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability; calculation of energy levels for hydrogen like atoms and their spectra.							
	Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle.							
	Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of wave function, probabilities and normalization; Probability and probability current densities in one dimension.							
	One dimensional infinitely rigid box- energy eigenvalues and eigen functions, normalization; Quantum dot as an example; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier.							
	Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, semi-empirical mass formula and binding energy.							
	Radioactivity: stability of nucleus; Law of radioactive decay; Mean life & half-life; α decay; β decay - energy released, spectrum and Pauli's prediction of neutrino; γ - ray emission.							
	Fission and fusion - mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions.							
DSE1P	Elements of Modern Physics (Practical)	02	Rupam	04	(04*15)			
	Practical:		Mal		=60			
	1. To determine value of Boltzmann constant using V-I							
	characteristic of PN diode.							
	2. To determine work function of material of filament of directly heated vacuum diode							
	3. To determine value of Planck's constant using LEDs of at							

	 least 4 different colours. 4. To determine the ionization potential of mercury. 5. To determine the wavelength of H-alpha emission line of Hydrogen atom. 6. To determine the absorption lines in the rotational spectrum of lodine vapour. 7. To study the diffraction patterns of single and double slits using laser source and measure its intensity variation using Photo-sensor and compare with incoherent source – Na light. 8. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light 9. To determine the value of e/m by magnetic focusing. 10. To setup the Millikan oil drop apparatus and determine the charge of an electron. 				
	SEMESTER VI			1	
DSE2T	Solid State Physics	04	Debasish	04	(04*15)
	Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Mille Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor.		Das		=60
	Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T3 law				
	Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia – and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss.				
	Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons.				
	Elementary band theory: Kronig Penny model. Band Gaps. Conductors, Semiconductors and insulators. P and N type Semiconductors. Conductivity of Semiconductors, mobility, Hall Effect, Hall coefficient.				
	Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect.				

DSE2P	Solid State Physics (Practical)	02	Debasish	04	(04*15)
	Practical:		Dee		-60
	1. Measurement of susceptibility of paramagnetic solution		Das		-00
	(Quinck`s Tube Method)				
	To measure the Magnetic susceptibility of Solids.				
	3. To determine the Coupling Coefficient of a Piezoelectric crystal.				
	To measure the Dielectric Constant of a dielectric Materials with frequency				
	5. To determine the complex dielectric constant and plasma				
	frequency of metal using Surface Plasmon resonance (SPR)				
	6. To determine the refractive index of a dielectric layer using				
	SPR				
	7. To study the PE Hysteresis loop of a Ferroelectric Crystal.				
	8. To draw the BH curve of iron using a Solenoid and				
	determine the energy loss from Hysteresis.				
	9. To measure the resistivity of a semiconductor (Ge) crystal				
	with temperature by four probe method (from room				
	temperature to 150 $ m C$) and to determine its band gap.				
	10. To determine the Hall coefficient of a semiconductor				
	sample.				